

Roll No.							
Claration and Canadidate							

Answer Sheet No.	
Sig. of invigilator	

PHYSICS HSSC-II

SECTION - A (Marks 17)

ime allowed: 25 Minutes

DTE	it s	houid b		the fire	st 25 minutes	and har	nded over to ti		uestion paper itse tre Superintenden	
1	Circie	the cor	rect option i.e.	A/B/C	/ D. Each part	carries ·	one mark.			
	(i)	The Va	alue of \in_{o} permit	tivity for	free space is:					
		A.	$9 \times 10^9 N - m^2 C^{-2}$	В.	$8.85 \times 10^{-12} \frac{C^2}{N_{\text{tot}}^2}$	C.	1.6×10 ⁻¹⁹ C	D.	$9.1 \times 10^{-19} \frac{Cm^2}{N}$	
	(ii)	A $50\mu F$ capacitor has a potential difference of 8V across it. The charge on the capacitor is:								
		Α.	$4 \times 10^{-4} C$	В.	$4 \times 10^{-2} C$	C.	4×10 ⁻⁶ C	D.	$4 \times 10^{-12} C$	
	(iii)	If time	constant in R-C	circuit is						
	• •	A.	Rapidiy			В.	Siowly			
		C.	Neither rapidiy			D.	infinitely			
	(iv)		lvanometer?				-	ection is	true for a moving	
		A.	$I \propto \theta$	В.	$I \propto \frac{1}{\theta}$	C.	$I \propto \sin \theta$	D.	$I \propto \cos \theta$	
	(v)	Reacta	ance of a capaci	tor conne	ected across an	A.C Sou	ırce is given by:			
		A.	$X_c = \omega C$	В.	$X_c = \frac{\omega}{C}$	C.	$X_c = \frac{1}{\omega C}$	D.	$X_c = \frac{1}{\boldsymbol{\omega}^2 C^2}$	
	(vi)	For RL	. series A.C circu	uit, the vo	oltage ieads the	current	by a phase angl	e of:		
		A. .	$\theta = \tan^{-1}(\omega LR)$	B.	$\theta = \tan^{-1}\left(\sigma L/R\right)$	C.	$\theta = \tan^{-1} \left(\frac{R}{\omega L} \right)$	D.	$\theta = \tan^{-1} \left(\frac{1}{\omega LR} \right)$	
	(vii)	The cr A.	itical temperatur 1.18 <i>k</i>	e for lead B.	d is: 3.72 <i>k</i>	C.	7.2 k	D.	125 k	
	(viii)	The cu	irrent gain of a tr	ransistor	given by the rei	ation is:				
		A.	$\beta = \frac{I_c}{I_B}$	В.	$\beta = \frac{I_E}{I_C}$	C.	$\beta = \frac{I_{B}}{I_{E}}$	D.	$\beta = \frac{I_E}{I_R}$	
	(ix)	The open loop gain of the operational amplifier is of order:								
	` .	Α.	10 ⁻⁴	В.	105	C.	10 ⁻⁵	D.	10 ⁻⁶	
	(x)	The va	alue of Stefan's o	onstant	δ is given by:					
	, ,	A.	$5.67 \times 10^{-8} Wm$		•	В.	$5.67 \times 10^8 Wm$	$-2k^{-4}$		
		C.	$5.67 \times 10^{-18} Wr$	$n^{-2}k^{-4}$		D.	5,67×10 ¹⁸ Wm	$k^{-2}k^{-4}$		
					h					
	(xi)	in Compton effect, the value of the factor $\frac{h}{m_o c}$ is about:								
	(xii)	A. The va	$2.43 \times 10^{-12} m$ alue of Rydberg ($2.43 \times 10^{-4} m$ is:	C.	$2.43 \times 10^{12} m$	D.	$2.43 \times 10^{-6} m$	
		A.	$1.0974 \times 10^7 m$	-1		B.	1.0974×10 ⁻⁷ n	n^{-1}		
		C.	1.0974×10° m	-1		D.	1.0974×10 ⁻⁹ 7	n ⁻¹		
	(xiii)	The bi A.	nding energy of 22.24 Mev	helium is B.	s: 28.2 <i>Mev</i>	C.	2.2Mev	D.	222 <i>M</i> ev	
	(xiv)		alf life of radium-		20.21MeV	O .	2.217107	D.	ZZZIVICV	
	(,,,,	Α.	4.5×10° yrs	В.	1620 yrs	C.	3.8 days	D.	23.5 min	
	(xv)		particle has a ch							
		Α.	+2e	В.	– 2e	C.	+8	D.	-е	
	(xvi)	-	d cancer is cure	d by:		D	Carbon 14			
		A. C.	Cobalt – 60 iodine – 131			B. D.	Carbon – 14 Nickel – 63			
	(xvii)		of the following	particies	is NOT Lepton		I HONGE OF			
	,,	Α.	Electrons			C.	Neutrinos	D.	Mesons	

Total Marks:

17

Marks Obtained:

(02)

(03)

PHYSICS HSSC-II

Time allowed: 2:35 Hours

Total Marks Sections B and C: 6

E: Sections B and C comprise pages 1-2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

- Q. 2 Answer any FOURTEEN parts. The answer to each part should not exceed 3 to 4 lines. (14 x 3 = 42)
 - (i) Explain briefly the applications of charging and discharging of capacitor.
 - (ii) What are the advantages of measuring potential differences with potentiometer?
 - (iii) Write down rules for finding the value of a Carbon resistances.
 - (iv) When a current carrying conductor is placed in magnetic field, it experiences a force. On what factors this force depends?
 - (v) A magnetic field accelerates a charged particle, but does no work on the particle. Explain this tatement.
 - (vi) A velocity selector has a magnetic field of 0.30 T. If a perpendicular electric field of $1000 V_m$ is applied. What will be the speed of the particle that will pass through the selector?
 - (vii) What is back emf effect in motors?
 - (viii) What is the impedance of the R-L series circuit? What is the phase angle between V and I?
 - (ix) How is a three phase A.C voltage generated?
 - (x) What is meant by reactance of a capacitor? How does it vary with frequency?
 - (xi) What are superconductors? Explain briefly.
 - (xii) Write down the conventional current equation and current gain of transistor.
 - (xiii) What is meant by open loop gain of operational amplifier?
 - (xiv) Will higher frequency light eject greater number of electrons than lower frequency light?
 - (xv) Why do we say that electrons have wave properties? Why do we say that electrons have particle properties.
 - (xvi) Describe different uses of laser in medicine.
 - (xvii) Show that 1amu=931Mev

(ii)

C.

- (xviii) What is meant by mass defect or mass deficit? Write down its expression.
- (xix) What is the composition of protons and neutrons in terms of quarks?

Calculate the energy of electron in this orbit.

SECTION - C (Marks 26)

		SECTION - C (marks 20)	
Note:		Attempt any TWO questions. (2 x 13	= 26
Q. 3 a.		What is an "Avometer"? Describe its various functions with the help of various circuit diagrams.	(06
	b.	What is Digital Multimeter? Explain briefly.	(03
	C.	What shunt resistance must be connected across a galvanometer of 50Ω resistance which	
		gives full scale deflection with 2mA current, so as to convert it into an ammeter of range 10 Amp?	(04)
Q. 4	a.	Describe the working of an op-amplifier as non-inverting amplifier. Also find an expression for gain.	(06)
	b.	Describe an Op-amplifier as a comparator.	(04)
	C.	Calculate the gain of an amplifier in which the collector resistance $R_{\rm c}$ is $5k\Omega$. The input resistance	
		between the base and emitter of a typical transistor is $2.5k\Omega$ and the value of its β = 100 .	(03)
Q. 5	a.	Derive an expression for hydrogen spectrum, using the 3rd postulate of Bohr's theory and	
		deduce Bohr's 2nd postulate with de-Broglie wavelength hypothesis.	(06)
	b.	The Orbital electron of a hydrogen atom moves with a speed of $5.456 \times 10^5 m_s$.	
		(i) Find the value of the quantum number 'n' associated with this electron.	(02)

How can the spectrum of hydrogen contain so many lines when hydrogen contains one electron?